Active Uncertainty Calibration in Bayesian ODE Solvers

نویسندگان

  • Hans Kersting
  • Philipp Hennig
چکیده

There is resurging interest, in statistics and machine learning, in solvers for ordinary differential equations (ODEs) that return probability measures instead of point estimates. Recently, Conrad et al. introduced a sampling-based class of methods that are ‘well-calibrated’ in a specific sense. But the computational cost of these methods is significantly above that of classic methods. On the other hand, Schober et al. pointed out a precise connection between classic RungeKutta ODE solvers and Gaussian filters, which gives only a rough probabilistic calibration, but at negligible cost overhead. By formulating the solution of ODEs as approximate inference in linear Gaussian SDEs, we investigate a range of probabilistic ODE solvers, that bridge the tradeoff between computational cost and probabilistic calibration, and identify the inaccurate gradient measurement as the crucial source of uncertainty. We propose the novel filtering-based method Bayesian Quadrature filtering (BQF) which uses Bayesian quadrature to actively learn the imprecision in the gradient measurement by collecting multiple gradient evaluations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Filtering for ODEs with Bounded Derivatives

Recently there has been increasing interest in probabilistic solvers for ordinary differential equations (ODEs) that return full probability measures, instead of point estimates, over the solution and can incorporate uncertainty over the ODE at hand, e.g. if the vector field or the initial value is only approximately known or evaluable. The ODE filter proposed in [9, 16] models the solution of ...

متن کامل

Bayesian Solution Uncertainty Quantification for Differential Equations

We explore probability modelling of discretization uncertainty for system states defined implicitly by ordinary or partial differential equations. Accounting for this uncertainty can avoid posterior under-coverage when likelihoods are constructed from a coarsely discretized approximation to system equations. A formalism is proposed for inferring a fixed but a priori unknown model trajectory thr...

متن کامل

COPADS IV: Fixed Time-Step ODE Solvers for a System of Equations Implemented as a Set of Python Functions

Ordinary differential equation (ODE) systems are commonly used many different fields. The de-facto method to implement an ODE system in Python programming using SciPy requires the entire system to be implemented as a single function, which only allow for inline documentation. Although each equation can be broken up into sub-equations, there is no compart-mentalization of sub-equations to its OD...

متن کامل

Scaling factors for ab initio vibrational frequencies: comparison of uncertainty models for quantified prediction

Bayesian Model Calibration is used to revisit the problem of scaling factor calibration for semi-empirical correction of ab initio calculations. A particular attention is devoted to uncertainty evaluation for scaling factors, and to their effect on prediction of observables involving scaled properties. We argue that linear models used for calibration of scaling factors are generally not statist...

متن کامل

Random Time Step Probabilistic Methods for Uncertainty Quantification in Chaotic and Geometric Numerical Integration

A novel probabilistic numerical method for quantifying the uncertainty induced by the time integration of ordinary differential equations (ODEs) is introduced. Departing from the classical strategy to randomize ODE solvers by adding a random forcing term, we show that a probability measure over the numerical solution of ODEs can be obtained by introducing suitable random time-steps in a classic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1605.03364  شماره 

صفحات  -

تاریخ انتشار 2016